belrus
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 2006
  • 2005
  • 2004
  • 2003
  • 2002
  • 2001
  • 2000
  • 1999
  • 1998
  • 1997
  • 1996
  • 1995
  • 1994
  • 1993
  • 1992
  • 1991
  • 1990
  • 1989
  • 1988
  • 1987
  • 1986
  • 1985
  • 1984
  • 1983
  • 1982
  • 1981
  • 1980
  • 1979
  • 1978
  • 1977
  • 1976
  • 1975
  • 1974
  • 1973
  • 1972
  • 1971
  • 1970
  • 1969
  • 1968
  • 1967
  • 1966
  • 1965
  • 1964
  • 1963
  • 1962
  • 1961
  • 1960
  • 1959
  • 1958
  • 1957
  • 1956
  • 1955
  • 1954
  • 1953
  • 1952
  • 1951
  • 1950
  • 1949
  • 1948
  • 1947
  • 1946
  • 1945
  • 1944
  • 1943
  • 1942
  • 1941
  • 1940
  • 1939
  • 1938
  • 1937
  • 1936
  • 1935
  • 1934
  • 1933
  • 1932
  • 1931
  • 1930
  • 1929
  • 1928
  • 1927
  • 1926
  • 1925
  • 1924
  • 1923
  • 1922
  • 1921
  • 1920
  • 1919
  • 1918
  • 1917
  • 1916
  • 1915
  • 1914
  • 1913
  • 1912
  • 1911
  • 1910
  • 1909
  • 1908
  • 1907
  • 1906
  • 1905
  • 1904
  • 1903
  • 1902
  • 1901
  • 1900
  • 1899
  • 1898
  • 1897
  • 1896
  • 1895
  • 1894
  • 1893
  • 1892
  • 1891
  • 1890
  • 1889
  • 1887
  • 1886
  • 1885
  • 1884
  • 1883
  • 1880
  • 1879
  • 1877
  • 1876
  • 1875
  • 1874
  • 1873
  • 1870
  • 1869
  • 1868
  • 1867
  • 1866
  • 1863
  • 1860
  • 1859
  • 1858
  • 1854
  • 1853
  • 1852
  • 1851
  • 1850
  • 1848
  • 1847
  • 1845
  • 1843
  • 1840
  • 1839
  • 1838
  • 1837
  • 1836
  • 1834
  • 1833
  • 1830
  • 1828
  • 1827
  • 1826
  • 1825
  • 1823
  • 1822
  • 1820
  • 1819
  • 1817
  • 1812
  • 1810
  • 1808
  • 1800
  • 1797
  • 1795
  • 1790
  • 1789
  • 1788
  • 1785
  • 1778
  • 1775
  • 1692
  • 1680
  • 1661
  • 0

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

1984

1983

1982

1981

1980

1979

1978

1977

1976

1975

1974

1973

1972

1971

1970

1969

1968

1967

1966

1965

1964

1963

1962

1961

1960

1959

1958

1957

1956

1955

1954

1953

1952

1951

1950

1949

1948

1947

1946

1945

1944

1943

1942

1941

1940

1939

1938

1937

1936

1935

1934

1933

1932

1931

1930

1929

1928

1927

1926

1925

1924

1923

1922

1921

1920

1919

1918

1917

1916

1915

1914

1913

1912

1911

1910

1909

1908

1907

1906

1905

1904

1903

1902

1901

1900

1899

1898

1897

1896

1895

1894

1893

1892

1891

1890

1889

1887

1886

1885

1884

1883

1880

1879

1877

1876

1875

1874

1873

1870

1869

1868

1867

1866

1863

1860

1859

1858

1854

1853

1852

1851

1850

1848

1847

1845

1843

1840

1839

1838

1837

1836

1834

1833

1830

1828

1827

1826

1825

1823

1822

1820

1819

1817

1812

1810

1808

1800

1797

1795

1790

1789

1788

1785

1778

1775

1692

1680

1661

0

eng Incomplete Auto-Translation

Tight Braids

Igor Savchenko 2020
Text

Articles on KALEKTAR

Тугие косы

 

«Знания – всем», научно-популярный альманах, № 6, 1951, Новосибирск, с. 23-25, напечатано по книге В. Полозова «Занимательно о физикѣ», С.-Петербургъ, 1908 [1]

 

О маятнике и долженствующей походке юных барышень

 

Виктор Полозов

 

Наверняка почти каждому из читателей доводилось хоть однажды наблюдать следующую картину. Впереди вас идёт юная особа с туго заплетённой косой или с двумя косами. Какое-то время они пребывают, можно сказать, что в покое, лишь слегка намекая на покачивания в такт шагов своей хозяйки. Потом их раскачивание становится очевидным, и в какой-то момент они пускаются в форменную свистопляску с неимоверной амплитудой, не теряя синхронности с шагами. Причём, шаг обладательницы сей красоты не меняется ни в скорости, ни в широте. Кто-то из вас, вероятно, отмечал явную характерность этого явления и совсем уже некоторые задавались вопросом о его происхождении. Попробуем в нём разобраться.

 

Начнём с очевидного – раскачивающиеся косы можно представить в виде маятника. Для простоты ограничимся одной, (рис.1).

  

Рисунок фиксирует момент колебаний близких к равновеликим. Одно полное колебание нашего маятника есть его перемещение из точки А в точку В и обратно. Частота колебаний определяется их числом в единицу времени – в секунду (прим. редакции: в отличие от оригинального издания, измерения всех величин приведены здесь к действующим на настоящий момент международным). В нашем случае, одно полное колебание соответствует двум шагам – ведь именно шаги и есть те импульсы, что раскачивают наш «маятник». Что ж, самые прозорливые из читателей уже наверняка вспомнили об уже известном нам понятии резонанса, который и явится наиболее вероятным объяснением описанного фривольного поведения кос. Итак – гипотеза: частота шагов наших барышень оказывалась близкой к резонансной частоте их «маятниковых» кос. Проверим это расчётами.

 

Формула резонансной частоты маятника следующая:

 

f = (1/2π) √(g/L), Гц

 

где L – длина от точки подвешивания маятника до центра его масс, м

    g – ускорение свободного падения, м/с ²

 

Мы не можем оперировать фактической длиной косы, для расчётов нам необходимо наш маятник физический привести к математическому, отсюда и появляется приведённая длина. В нашем случае справедливо полагать, что масса распределена по косе примерно одинаково, и, пренебрегая незначительным сужением в конце последней, принимаем, что приведённая длина L равна половине фактической длины косы l.

 

Опираясь на весь наш практический опыт, включая экстремальные случаи, ограничим диапазон фактической длины косы двадцати пятью и ста сантиметрами. Выбрав внутри диапазона опорные точки, получаем следующие результаты:

 

фактическая длина косы, l / приведённая длина, L / резонансная частота, f

 

25 см / 12.5 см/ 1.4 Гц

45 см / 22.5 см / 1.05 Гц

50 см / 25 см / 0.998 Гц

60 см / 30 см / 0.9 Гц

70 см / 35 см / 0.84 Гц

100 см / 50 см / 0.7 Гц

 

Рассмотрим получившееся. Отбросив крайние точки – 25 и 100 см – мы видим, что резонансная частота крайне близка к значению «два шага в секунду». А это, признаем, соответствует обычной скорости движения для случая целевого перемещения из одного пункта в другой (мы не рассматриваем здесь «бесцельное блуждание» или, наоборот, «бег», побуждаемый вынужденными обстоятельствами). Да и крайние точки, по существу, несильно отличаются со своими двумя шагами за чуть менее полутора секунд для ста сантиметровой и за около 0.7 секунд для 25-ти сантиметровой косы.

 

Таким образом мы видим, что практически в любой ситуации непринуждённого пешего движения, при любой длине косы, её обладательница подвержена попаданию в описанный резонанс, привлекая к себе тем самым повышенное внимание противоположного пола. Мы не берём на себя здесь функции блюстителей нравов, тем более, наблюдая некоторые их неизбежные изменения, а можем лишь обозначить способ избежать такового, если угодно, конфуза. Походка юной барышни должна быть максимально отлична от оной сошедшего на берег матроса, привыкшего к раскачивающейся палубе под ногами.

  

[1] Полозовъ, Викторъ. «Занимательно о физикѣ», С.-Петербургъ, 1908, популяризаторское изданіе, рекомендованное Министерствомъ народнаго просвѣщенія въ качествѣ дополнительной литературы для училищъ и гимназій Россійской имперіи

 

Игорь Савченко

Минск, декабрь 2020