belrus
  • 2024
  • 2023
  • 2022
  • 2021
  • 2020
  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2009
  • 2008
  • 2007
  • 2006
  • 2005
  • 2004
  • 2003
  • 2002
  • 2001
  • 2000
  • 1999
  • 1998
  • 1997
  • 1996
  • 1995
  • 1994
  • 1993
  • 1992
  • 1991
  • 1990
  • 1989
  • 1988
  • 1987
  • 1986
  • 1985
  • 1982
  • 1977
  • 1976
  • 1974
  • 1972
  • 1971
  • 1970
  • 1969
  • 1962
  • 1960
  • 1958
  • 1956
  • 1954
  • 1953
  • 1952
  • 1937
  • 1932
  • 1930
  • 1927
  • 1925
  • 1921
  • 1920
  • 1919
  • 1912
  • 1891

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

2008

2007

2006

2005

2004

2003

2002

2001

2000

1999

1998

1997

1996

1995

1994

1993

1992

1991

1990

1989

1988

1987

1986

1985

1982

1977

1976

1974

1972

1971

1970

1969

1962

1960

1958

1956

1954

1953

1952

1937

1932

1930

1927

1925

1921

1920

1919

1912

1891

eng Translation Missing

Дилемма Эберга

Igor Savchenko 2012
Текст

Дилемма Эберга

Труды лаборатории искусственного интеллекта Массачусетского технологического института, MIT Papers on Artificial Intellect Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, Volume II, 1983, pp. 16-18

О новых подходах к решению дилеммы Эберга

Ноткер Фриш

Приведём здесь кратко существо проблемы. Представим, что мы имеем самонастраивающуюся адаптивную систему, которая может существовать в двух средах – А и Б. Стратегия S1 предполагает, что система, в зависимости от своего местонахождения, максимально адаптируется к условиям каждой из сред, что означает и максимальную же её перенастройку при переходе из среды в среду, – затраты Z1 на такую стратегию тоже максимальны. Альтернативная стратегия S2 предполагает, что система в каждой из сред адаптируется к каким-то их усреднённым условиям и при смене среды претерпевает гораздо меньшую перенастройку, – соответственно, и затраты Z2 на такую стратегию меньшие. Оптимальной будет та стратегия, где соотношение эффективности функционирования системы к уровню затрат на это будет наибольшим. Подробно изложив таковую диспозицию, Эберг показал [1], что для случая двух и более сред нет сугубо математического решения, однозначно указывающего на то, которая из двух стратегий – S1 или S2 – будет оптимальной, т. е. всякий раз мы оказываемся перед дилеммой. 

Предлагаю подойти к проблеме с другой стороны. На самом деле, перед схожей задачей выбора наилучшего варианта из двух возможных оказываются те из нас, кто решает, как одеться в холодное время года, выходя из дому: S2 – так, чтобы, оставаясь в одних и тех же одеждах, чувствовать себя, по возможности, одинаково комфортно и на улице, и в помещении, или – S1 – надеть пальто, плащ и т.п. явно выраженную верхнюю одежду, и снимать её всякий раз, опять оказываясь в помещении. Очевидно, что каждый из вариантов имеет свои плюсы и минусы, и всякий раз мы решаем задачу оптимального выбора. Таким образом, практика повседневной жизни большинства европейских стран и Соединённых Штатов даёт нам обширнейший эмпирический массив принятия таких «оптимальных решений». Полагаю, что именно тщательный анализ этого массива – с точки зрения социальной, культурной, географической, национальной, пола, возраста и др. – и даст нам ключ к разрешению дилеммы Эберга. 

[1] Эберг, Арнольд. Об оптимальном выборе стратегий адаптивных систем, Труды по теории вычислительных машин Массачусетского технологического института, MIT Papers on Computer Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts, Volume XXIII, 1971, pp. 36-51 

Игорь Савченко

Минск, ноябрь 2012