Принимающий ставки
Вѣстникъ знанія, 4-ый годъ изданія, № 21, май 1904, С.-Петербургъ, с. 428-429
Доказательство
Павелъ Николаевичъ Бродинъ
«…Шестёрка выпала два раза кряду»
«…За нимъ – слава шулера, но никто пока не могъ его уличить»
изъ разговоровъ у карточнаго стола
Тему нашей статьи раскроемъ не сразу. Начнёмъ издалека. Обратимся къ сферѣ теоріи вѣроятности въ ея приложеніи къ карточной игрѣ.
Разсмотримъ ситуацію номеръ одинъ. Игрокъ А вытягиваетъ карту изъ колоды, которой распоряжается игрокъ Б, – просто любую карту безо всякаго выраженнаго намѣренія. Получаетъ конкретную. Послѣ возвращенія этой карты въ колоду и перетасовыванiя послѣдней, игрокъ А опять тянетъ карту, любую, безъ выраженнаго заказа на какую-то конкретную. Выпадаетъ та же. Назовёмъ это событіемъ N1, съ вѣроятностью наступленія PN1, разсчитываемой по опредѣлённой формулѣ, въ существо которой мы здѣсь углубляться не будемъ – не это намъ важно.
На очереди – ситуація номеръ два. Начало схожее – тотъ же игрокъ А вытягиваетъ наобумъ карту изъ колоды, которой распоряжается игрокъ Б. Получаетъ опредѣлённую. Карта возвращается въ колоду, которая затѣмъ перетасовывается. Игроку А предстоитъ опять тянуть карту изъ этой колоды. И вотъ тутъ онъ, мысленно или вслухъ, изъясняетъ намѣреніе вытянуть опять ту же карту, что выпала въ первый разъ. И таки дѣлаетъ это – вытягиваетъ ту же карту второй разъ кряду. Событіе это назовёмъ N2, а вѣроятность его наступленія – PN2.
Врядъ ли умѣстнымъ будетъ сомнѣваться въ томъ, что любой изъ нынѣшнихъ математиковъ приравняетъ совершенно вѣроятности обоихъ событій и станетъ исчислять ихъ по одной и той же формулѣ. Но мы, читающiе эти строки въ наше время, имѣемъ уже нѣкоторое преимущество предъ тѣми, кто читалъ бы это ещё какихъ-то лѣтъ сто назадъ – аналогія съ геометріей традиціонной и неэвклидовой даётъ намъ предвкушеніе иныхъ горизонтовъ, гдѣ формула исчисленія вѣроятности во второмъ случаѣ будетъ отлична отъ случая перваго и PN2 окажется неравна PN1.
Какъ только таковое произойдётъ, какъ только кто-то доказательно предъявитъ новый способъ исчисленія вѣроятности PN2, это станетъ непреложнымъ доказательствомъ существованія «силъ высшихъ», освѣдомлённыхъ о всёмъ сущемъ и способныхъ принять мысленную либо гласную ставку игрока А во второй ситуаціи.
Воодушевлённые такой перспективой сдѣлаемъ еще одинъ шагъ – предположимъ, что этой «высшей силой» можетъ являться и самъ игрокъ А.
Игорь Савченко
Минск, сентябрь 2022